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The tensor product of generalized sample spaces or manuals is defined within the 
framework of empirical logic. The requirement to accurately reflect the interac- 
tion of experimental procedures for coupled systems leads to three levels of 
product: the cross-product, operational product, and tensor product. The struc- 
ture of the weights on these products is examined and is used to give a condition 
for the existence of the tensor product. Categorical properties of the tensor 
product, including a universal mapping theorem, are given. 

1. INTRODUCTION 

Empirical logic, as developed by Foulis, Randall, and others, is a 
precise language in which physical theories can be expressed, compared, and 
evaluated. The primary structure in this language is a generalization of the 
classical notion of a sample space for an experiment. This forms the basis 
for a generalization of conventional statistics, called operational statistics, 
and provides a formalism for dealing with subjects such as quantum 
mechanics where methods of classical statistics often prove to be inade- 
quate. This research program is motivated by the work of Kolmogorov in 
probability and statistics (Kolmogorov, 1956), and the work of Dirac and 
von Neumann in quantum mechanics (Dirac, 1958; von Neumann, 1955). 
Comparisons between empirical logic/operational statistics and other ap- 
proaches to the foundations of empirical science can be found in Randall 
and Foulis (1978). 
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In any of these theories, it is important to have an effective method for 
combining two physical systems. This "product"  of systems should be 
motivated by the physical properties of actual experiments and should, in 
addition, be based on a solid mathematical foundation. It soon becomes 
apparent that to satisfy such criteria we need not one but several different 
products which can reflect any influence (or tack of influence) between the 
systems. Thus, in Section 3, we present the cross-product, operational 
product, and tensor product of generalized sample spaces to allow for the 
presence of bilateral, unilateral, or no influence, respectively. 

The definitions of products for our formalism were introduced by 
Foulis and Randall at the Marburg Conference on the Interpretations and 
Foundations of Quantum Theories in 1979. For the sake of completeness we 
will repeat the basic definitions and some immediate consequences here, and 
refer the reader to the proceedings of this conference (Foulis and Randall, 
1979; Randall and Foulis, 1979) for a more detailed discussion of the 
motivation for these definitions. 

2. BASIC DEFINITIONS 

In obtaining our generalized sample space, we start with a nonempty 
collection of nonempty sets d .  The sets E ~ d are called operations and 
thought of as possible results of some physical experiment. Thus elements 
x ~ E are called outcomes of E and the set X =  {x: x ~ E and E c d } ,  
sometimes written U d ,  is the set of all d outcomes. Following the 
terminology of classical probability, a subset of an operation is called an 
event and the collection of all d events is denoted do(d) .  Note that an 
arbitrary subset A _c X is not considered an event unless A _ E for some 
E ~ d .  

This leads to a generalization of the notion of mutually exclusive 
events. For A and B in d~  we say that A is orthogonal to B, and write 
A _1_ B, if A n B = q~ and there is an E ~ d w i t h  A U B _ E. (We will use the 
notation �9 to indicate a disjoint union.) In the special case where A_I_ B 
and A �9 B = E ~ d ,  we call A and B operational complements, denoted 
AocB.  

Notice that we have made no restrictions on operations overlapping in 
our structure and, in fact, it is precisely this identification of outcomes (and 
hence events) from different operations that provides the richness of the 
theory. One may think of the co l l ec t iondas  a set of classical sample spaces 
(operations) where an event A may appear in more than one sample space. 
This defines a natural "equivalence" as follows: We say two events A and C 
are operationally perspective, denoted A opC, if there is a B ~ d ~  with 
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A ocB and CocB. Such a common operational complement B is called an 
axis ofperspectiuity. The only condition imposed on our collection of sets 
is that the op-relation be a true equivalence relation: 

Definition 2.1. A nonempty collection of nonempty sets ,~r is called a 
generalized sample space or manual if for any A, B,C in ~ ( , ~ )  with AopC 
and CocB,  we have AocB. 

The terms "generalized sample space" and "manual"  are used inter- 
changeably; the first emphasizes the structure's relationship to classical 
probability and statistics, while the second reminds us of its role as a 
collection of physically realizable experimental procedures. 

A premanual is a nonempty collection of nonempty sets which is 
contained in a manual. For any premanual d ,  there is a unique smallest 
manual containing ,~r This is called the manual generated by d ,  denoted 
(,.~r and is simply the intersection of all manuals which contain 6~r It is 
important to note here that (,~r will always have the same outcome set 
as ~ ' .  

We will need the following finiteness definitions in what follows: 

Definition 2.2. Let e~Cbe a manual (or premanual). 
(i) zaCis called finite if it contains a finite number of operations. 
(ii) ,~r is called locally finite if each operation has a finite number of 

outcomes. 
(iii) ,.~'is called totally finite if it is both finite and locally finite. 

Three obvious examples of manuals are the classical manual, the 
transformation manual, and the semiclassical manual. A classical manual is 
one with a single operation; a transformation manual is one in which each 
operation has a single outcome, and a semiclassical manual is one in which 
no two operations intersect. Further examples, notably the Hilbert space 
manual and Borel space manual, may be found in Foulis and Randall 
(1979) and Randall and Foulis (1979). 

3. PRODUCTS OF MANUALS 

We now consider the problem of how to combine two manuals to form 
a product manual. Let ~ and ~ be manuals with outcome sets X and Y, 
respectively. We think of ,~r as representing a collection of possible experi- 
mental operations for one observer (or physical system), while ~ represents 
a second observer with a (possibly different) set of procedures. In each of 
the product manuals, the outcome set will be X • Y, and we will denote 
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product outcomes with juxtaposition, xy. Similarly, if A ~ o~(,.~ r and B 
d~ AB = {xy: x ~ A and y ~ B }. 

The simplest of the products to consider is the cross-product ~r x ~ = 
{ EF: E ~ ~r and F ~ ~ }. We think of the two observers acting with no 
knowledge of the other; the first executing some operation E E ~'while the 
second chooses any F ~ ,.~ to execute. If x ~ E and y ~ F results, the 
outcome xy would be reported for the product operation. 

In an operational product, one of the observers is allowed to execute an 
operation first. The outcome of this operation determines exactly which 
operation the other observer performs. There are two operational products: 
..ar consists of all such operations initiated with an sr operation, and d, .~ 
consists of all such operations initiated with a ,.~ operation. This yields the 
following definition: 

Definition 3.1. An operational product of manuals ,.cO'and ,,~ is either 
(i) ~ = ( U e ~ e e F e :  E ~ C a n d F e  ~ f o r a l l e ~ E }  
(ii) ,~r {U/~FE/f: F ~ ~ and E l ~ ,~r a l l f  ~ F} 

It is not hard to check that each o f ~ '  x ~ ,  ~r d ~  is a manual, given 
manuals ~ ' a n d  ..,~. Note that any operation in  d x ~ can be found in both 
,.~'~ and ,~r and, in fact, ..~ x ~ =.~r162 We wish to point out that 
we are taking a small liberty in writing this as an equality since an o[~eration 
EF has a temporal order when considered as an element of , ~  or ..~r and 
this is not present in ~r x ~ .  

In const~cting the tensor product ,jar174 we require that it contain 
both ,~r and ,.~r and, of course, that it be a manual. In fact, we define it 
to be the smallest such manual. For convenience, we let ,.~r denote ,~r 

Definition 3.2. The tensor product of manuals ~ and ~', denoted 
.~r174 is defined to be {~r if it exists. 

There are three possibilities for .~r it may be a manual, it may be a 
premanual but not a manual, or it may not even be a premanual. While the 
vast majority of cases fall in the second category, any of the three possibili- 
ties may occur. Clearly, if .~ '~ is a manual, it is equal to ~ ' |  This 
happens only for small classes of manuals ~r and ~ ,  as described in the 
following theorem. 

Theorem 3.3. For manuals ~r 5~, .~ '~  is a manual if and only if 
any one of the following three conditions hold: 

(i) ~r ~ is a classical manual. 
(ii) .~r ~ is a transformation manual. 
(iii) .~r ~ are semiclassical manuals. 

Proof. Assume that none of the conditions (i)-(fii) hold. Without loss of 
generality, we may assume that .~r is not semiclassical and ~' is neither 
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classical nor a transformation manual. We show that ,.~r could not be a 
manual. Since zgis not semiclassical there must be nonempty disjoint events 
A, B, C ~ d'(s~') such that A �9 B and B 0 C are operations in,.~r In 5~ there 
must be events Q, R, U, V ~ o'(N') with Q tO R and U tO V operations in ~ ,  
Q § U and only V possibly empty. Then in ,.~r we have the following 
operations: 

AQ tO AR u BU tO B V ~ a o ' ~  

A Q u BQ u CR u BR ~ ~'g~ 

A Q to A R to B Q u B R ~ ,sJ x ~ 

Therefore we have (AQ to BU to BV)op(AQ w BQ u BR) with axis AR, 
and (AQ U BQ t.) BR.)ocCR. If J~'~ were a manual, we would have E = AQ 
tO BU U BV to CR ~sg~. However, E ~,~r implies A tO B tO C ~ sr and 
E ~,.~r implies Q tO U w V tO R ~ ~ ,  neither of which is possible. 

To show the converse, one need only show that each of cases (i), (ii), 
(iii) produces a manual t iN .  It is not hard to show that if d i s  class!ca], we 
have ~r162 and if,~Cis a transformation manual, we have ~r162 
The proof for case (iii) is quite complicated, and is omitted here. �9 

We next exhibit manuals ~ and ~ such that ,~r is not a premanual. 
Fortunately, this occurs only in extreme examples where both of the 
manuals exhibit undesirable statistical and logical properties. Reasonably 
mild conditions on either the weights or the logics of,~Cor 3Y (some of which 
will be discussed in the next section) ensure that ~ r 1 7 4  exists for all 
commonly considered classes of manuals. 

Example 3.4. Let,~r be t he"  wedge" manual: ,~r = { { x, y, z }, { x, u, r }, 
( y , v , r } ,  ( z ,w , r } } .  Then ~r174 not exist. 

In cases where ,.~r | N' exists, computing the smallest manual containing 
~ r  usually proves to be an enormous task. For example, the Wright 
triangle [,~r = (( a, d, b }, (b, e, c}, (a,  f ,  c} }] tensored with itself has 423 
operations. An APL computer routine may be employed to find the size of 
the tensor product in many cases. However, an important open question is 
to find workable methods for constructing the tensor product of two 
arbitrary generalized sample spaces. Some progress has been made in this 
area by studying the probability measures (weight functions) associated with 
a manual. Contrary to the complicated nature of the tensor product itself, 
the weight functions supported by the tensor product of generalized sample 



634 Lock and Lock 

spaces are quite well behaved, easily described, and furnish compelling 
evidence as to the practical value of the products. 

4. WEIGHT FUNCTIONS ON GENERALIZED SAMPLE 
SPACES AND THEIR PRODUCTS 

Much of the theory of classical probability deals not with the form of 
particular sample spaces but with the set of probability measures which can 
be put on those spaces. Analogously, a central role in the analysis of a given 
generalized sample space ~r given to its set of weight functions, denoted 
by f~(~r A weight on a generalized sample spacez~Cwith outcome set X is a 
function w: X ~  [0,1] such that Y~,~EW(X)=I for any operation E ~ ear 
Thus a weight is merely a discrete probability measure on each of the 
operations in ~r which agrees on any outcomes where the operations may 
overlap. The set of all weights on jar may be thought of as the set of all 
complete stochastic models for the physical system described by ,.at. Any 
weight may be extended to a function on g ( d )  by defining w(A)=  
F..,.~Aw(x) for any A ~ d ' ( d ) .  One can easily check that o~ satisfies most 
reasonable axioms for a probability measure once they have been modified 
to fit into the framework of generalized sample spaces. For example, to say 
that w is finitely additive for a set of events A 1, A 2 . . . . .  A,,, we must assume 
that the events are jointly orthogonal, i.e., pair-wise orthogonal and con- 
tained in one common operation. 

Let us now turn to the problem of describing the weight functions 
allowed by each of our products. In the following discussion we will assume 
that bother 'and ~ are manuals with outcome sets X and Y, respectively, and 
that d |  exists. 

If a ~ f ~ ( ~  r and /3~ f~ (~ ) ,  we may define the product weight aB: 
XY--* [0,1] by a/3(xy) = a(x)B(y). It is easily shown that a product weight 
is a valid weight on any of our products and one readily sees that the set of 
product weights represent those stochastic models under which the opera- 
tions in .~r statistically independent of those in ~ .  

Note that adding operations to a manual increases the number of 
constraints on potential weight functions (assuming the outcome set remains 
the same), and hence sd 1 _ ~r implies f~(sr ~(..acx). Recalling the order 
of inclusion from Section 3, then, we see that f~(~r174 G f~(~d..~) G ~2 (e~'5i~) 
and ~2(jar _c a ( ~ '  x .,~). Although ,~r is generally not a manual, it is still 
reasonable to consider the set of weight functions allowed by that collection 
of operations. 

Fortunately, even though we may have very little knowledge of the 
actual operations in ..~'| we can still say a great deal about the weight 
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functions on 6~r174 This is made possible by Theorem 4.2, In order to 
prove this theorem, we must understand the construction of the manual 
generated by a premanual. This is exhibited by the following proposition, 
which is not hard to prove: 

Proposition 4.1. Let d be a premanual, X =  U ~r Define..~r = { S _c 
X: there exist A, B, C ~ o~(.~ r with S = A U C and A opB,  B o c C  in~r }. We 
iterate this process by defining ..~r { S _  X: there exist A, B , C ~  
d~ ' u ' - ~ )  with S = A O C  and AopB,  B o c C  in ,s~cu,-l~}. Then (,s~r 
U ~ ,s~r ~ ', ~ t i l l  

Theorem 4.2. If ~ is a premanual, f~(~r = f~((sr 

Proof. It is easily seen that w ~ f~((,sr implies w ~ f~(,s~'). Conversely, 
let w E~2(,s~'). By the above construction of (~r  it suffices to show 
w e  f~(,s~ '~'~) for each n. We use induction on n. Assume w ~ f~(sCu'-~l). 
Let S ~ ,s~ r Then there exist A, B ,C  ~ ~(,s~r ~'-1~) with S =  AU C and 
A o p B ,  B o c C  in .sr ~''-~). Therefore w ( A ) = w ( B ) = l - w ( C )  and we see 
that w(S) = w(A) + w(C) = 1. Therefore w ~ f~ (,s~ r and we are done. �9 

It is not hard to see that f~(~'~')= fl(,s~c~')n f~(,~L~'), and hence we see 
that w(,s~'| )---f~(,s~'z~)n f~(,s~',,~). Therefore we will know all of the possi- 
ble weights on ~ r 1 7 4  if we can find all weights on the much simpler 
operational products. This analysis is aided further by a very nice (and 
physically appropriate) characterization of the weights which are supported 
by an operational product. 

Let w be a weight on oar • ,~. We seek necessary and sufficient 
conditions for w to be in ~2(,zeS~). For any operation E ~ ,~r may define 
Ew: Y ~ [ 0 , 1 ]  by E w ( y ) = w ( E y ) .  Note that Ew is a sort of marginal 
probability and it is easily checked that Ew ~ f~(B). We refer to Ew as the 
weight w preconditioned by the operation E. Similarly, for any F ~ ~ ,  we 
may define the postconditioned weight w E ~ f~(,s~r by wr(x  ) = w(xF)  for all 
x ~ X .  

Now suppose that E and G are two different operations in ,sr For an 
arbitrary weight w ~ ~2(~r • ,,~), we have no a priori constraint that Ew = ~w. 
In fact, it is quite possible to have ew 4=sw, which would imply that the 
execution of a particular operation in ~ has some discernable "influence" 
on the probabilities of ~' outcomes. It is precisely this form of influence 
which we find is eliminated in weights on the operational product. 

Theorem 4.3, Let J~r and ~' be manuals and w ~ f~(,~r • ~ ) .  Then 
(i) w ~ f~(,s~r if and only if w E = wtt for all F, H ~ ,,~, and (ii) 
w ~ f~(,s~'~') if and only if Ew = sw for all E, G ~ ,~r 

Proof. Let w ~ ~2(,s~'5~) and F, H ~ ~ .  Let x ~ X. We must show 
w ( x F )  = w(xH) .  Let E be any operation in ,s~Ccontaining x. Then EF and 
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( E - x ) F U x H  are both operations in ,,ar ~. Hence , 0 ( x F ) = l - w ( ( E -  
x ) F ) =  w(xH) ,  and we see that WF=WIt. Conversely, let w ~ 2 ( ~ •  
and SUl~pose w r - -  w n for all F, H ~ ,~. Let K =Ue~l~eFe be an operation 
in z~',~. We must show w ( K ) = l .  Let F be any operation in .~. By 
assumption, w(eF~) = w(eF)  for every e ~ E. Thus w ( K  ) -- w(Ue~ EeF,.) = 
Z,,~ Ew(eF~) = E ~  Ew(eF) = w(EF)  =1,  and we are done. �9 

In other words, the weights allowed on s~'5~are precisely those in which 
M operations have no observable influence on s~'operations, and vice versa 
for weights on ~ar Combining this with Theorem 4.2 we have the following 
obvious corollary. 

Theorem 4.4. Let z~'and ~ be manuals such that ~ @ M  exists. A 
weight w ~ ~2(Ja~' x 2 )  is a weight on ,,~'@~ if and only if Ew = c,W 
for all E, G ~ ~ ' a n d  w r = w H for all F, H ~ ~ .  

It is in this sense that we claimed at the end of Section 1 that our three 
levels of products would allow for the possibility of bilateral influence 
(cross-product), unilateral influence (operational product), or no influence 
(tensor product). However, one should be careful to note that we are not 
claiming that there can be no correlation between the two systems. In 
general, there are many weights on ,,~'@N' which are not of the form of 
product weights a/3 and hence may describe different degrees of dependence 
among the systems without being influenced by a particular choice of 
operations. 

5. STATISTICAL CONDITIONS FOR EXISTENCE 

Clearly, any results pertaining to premanuals also give us insight into 
the tensor product. The most useful criteria which has been developed to 
date for determining if an arbitrary collection of sets ~ ' i s  a premanual is 
based on its set of weights f~ (~) .  

Theorem 5.1. Suppose,,~is a nonempty collection of nonempty sets 
and for any x ~ U d ,  there exists w ~ ~(jar with w(x )  > �89 Then 
J i s  a premanual. 

Proof Let ,~ = { E _ U s~': F~,. e Ew(x) = 1 for all w ~ ~ ( ~ )  }. Clearly, 
_ 2 .  The proof will be completed by showing that ~ is a manual. Let 

A, B,C ~ o~(~) with A o p B ,  B o c C  in ,~. For any w ~ ~2(s~'), it is easy to 
see that w ( A ) =  w ( B ) = l - w ( C ) .  Hence, w ( A ) +  w ( C ) = l ,  and it remains 
to show A n C = ~ .  Let x ~ A n C. By assumption, there is w ~ a(s~ ')  with 
w ( x )  > �89 Therefore, w(A)  > �89 and w(C)  > &, a contradiction. Thus A �9 C 

2 ,  and we are done. �9 



Tensor Produc! of Generalized Sample Spaces 637 

In general, the manual aM produced by the procedure in the proof will 
not be (.~r Furthermore, there is an abundance of premanuals (and 
manuals) which fail to satisfy the conditions of Theorem 5.1. 

Let us now return to the existence question for the tensor product. 
Recall that for a ~ f~(jar aM ~ f~(aM), the resulting product weight t~fl is 
always in f~(,zc| Therefore, we get the following result as an immediate 
corollary to the above theorem. 

Corollary 5.2. Let ,.~r aM be manuals and suppose for each x c U e~r 
there exists a ~ f~(,.~r with a (x )  > 1/V~-, and for each y c U aM, 
there exists/3 c f~(aM) wi th /3(y)  > l/v/-2. Then ~r174 exists. 

It is interesting to note that if d i s  the wedge manual of Example 3.4, 
the largest weight which can be put on the outcome r is 2/3,  which is just 
less than 1/v~-, so we should not expect to improve greatly on that bound. 
However, again note that there are many examples for which the criteria of 
Corollary 5.2 are not satisfied and,zC| still exists. 

It is not necessary for both manuals to be well behaved to ensure that 
the tensor product exists. There is a class of particularly nice manuals which 
may be tensored with any other manual. We will need the following 
definitions. The dispersion-free (d.f.) weights on a manual d ,  denoted 
~2dt(Z~'), are the weights which assign only the values 0 or 1 to any outcome. 
The d.f. weights represent the deterministic models on a generalized sample 
space. A set of weights A c_ ~2(,.~') is called unital if for every x ~ u d ,  there 
is a w ~ A with w ( x )  =1. Finally, ~ ' i s  called a u d f m a n u a l  if it has a unital 
set of dispersion-free weights. These are our "particularly nice" manuals, 
and we have the following theorem: 

Theorem 5.3. If ~ is a udf manual, then ~r174 exists for any 
manual aM. 

We will need some additional terminology: For w ~ 2 ( , ~ ' ) ,  define 
w 1 = ( x  ~ U ,~r w ( x )  =1}. Then for any manual ,~r we define ,~* = (wi: 
w ~ f~dr(z~')}. Notice that ,~r might be empty; however, if ~ is udf, then 
W ,~r = U ,~'. We will discuss certain maps between manuals, called "inter- 

pretation" morphisms, in the next section. Each such morphism , ~  aM 
defines a relation on the outcome sets X • Y. The set INT(,~'  ~ aM) is the 
set of all such relations. Given this background, the proof of the above 
theorem rests on the following sequence of facts, each of which is itself of 
major importance. 
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Facts 5.4. (a) If ~ '  is udf, then ,,~* is a manual.  (2) If ~ '  and ~ are 
manuals,  then I N T ( , , ~ ' ~  ~ )  is a manual.  (3) If ~ is udf, then ~@_c  
INT(, ,~* ~ ~ ) .  

6. T H E  T E N S O R  P R O D U C T  AS A C A T E G O R I C A L  O B J E C T  

In the category of manuals,  the appropria te  morphisms are those maps 
which "pul l  back"  each weight on the range manual  to a weight on the 

,v 
domain  manual.  That  is, we wish to define a map,.q0'---, ,,~ such that for every 
w ~ ~2(~), we have w o cp ~ ~2(Ja~'). It is easy to check that the following 
definition satisfies this criterion: 

Definition 6.1. Let 5aeand ..~ be manuals with outcome sets X and Y, 
respectively. A map qo: X ~ 9~(Y) is called an interpretation if the following 
two condit ions are satisfied: (i) (operation-preserving):  For  every E ~ s~', 
q~(E) ~ N': (ii) ( _k-preserving): For  every A, B ~ d ~  with A _1_ B, cp(A) _1_ 
(p(B) in .~. 

We view cp as a map or --* d~ and write qo(A) for U ,.~ .4cp(x), as 
in the definition above. 

Extending this notion to a cross-product  of  manuals, we wish to define 
,p 

a '" bi- interpretat ion" to be a map ~ x ,~ ~ cg such that every weight on 
will induce via qo a weight on d and a weight on ~ .  Such a map will be 
defined on the outcome sets and lifted as before to a map on all events. 

Definition 6.2. Let 5ar ,,~, and cg be manuals with outcome sets X, Y, 
and Z, respectively. A map q~: X • Y---, ~@(Z) is called a bi-interpretation if 
the following two condit ions are satisfied: 

(i) For  any E ~,s~ 'and {Fe: e ~ E } c _ ~ ,  q 0 ( U ~ . ~ / _ e F e ) ~ ,  and for 
any F E N ' a n d  {El:  f E F} c ~ ,  cp(U / ~ / E I f ) ~  c~ 

(ii) For  every A1, A~.~E(,.~) with A1A_A 2, eP(ALB1)_l_ep(A2Bz) for 
any B s, B 2 ~ d~ and for every B L, B z ~ d~ ')  with B 1 _1_ B_,, ep(AiBL) _1_ 
ep(AzB z) for any A l, A 2 ~ 6~ 

cp 
Ifs~'  x ,~ ---, Yis  as bi-interpretation and w ~ ~2(Y), we define w~ on X 

by wl(x ) = w(ep(xF)) for any F ~ .~, and we define ~5 on Y by w,_(y) = 
w(q)(Ey)) for any E ~ ,~. The conditions on a bi-interpretation are pre- 
cisely what is required to ensure that these definitions are well defined, and 
that w~ ~ ~2(..qr and w 2 ~ ~2(,,~). 

Theorem 6.3. (universal mapping  theorem). Let ,.aeand ~ be manu-  
als such that ,.~'| exists. Then there exists a unique pair  (p., cg) 
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satisfying (i) W is a manual; (ii) ..~ x ~ ~ ~ is a bi-interpretation; 

(iii) for every manual ,,# and bi-interpretation ~ '  x ~ --, ~t', there is 
c~ 

a unique interpretation ~ ' - , J t  such that ~ p = ~ .  Furthermore, 
~f = s ~ |  as defined earlier. 

Proof Uniqueness: Let (/~, ~) ,  (v, .~) be two such pairs. By hypothesis, 

then, there exist interpretations ~g~ ~ and ~ ~ ~g such that v = ~/.t, and 
/~ = ~v. Then ~ ( / ~ ) =  ~ ( ~ ) =  ~v =/.t and, by uniqueness of the completion 
on the diagram below, ~.0 = id(~) :  

p. 
,_~ x ,~ .cg 

I p,V 
t 

Similarly, ~ = id(~), and uniqueness is proved. 
Existence: Let cg = ,.~,| and define/~ by (x, y)  ~ :g:. Then clearly (i) 

and (ii) are satisfied. Let ~ x ,,~---, Jr '  be a bi-interpretation into a manual 
./g. Clearly, ~ must be defined by ~(xy)  = cp(x, y), and hence ~ is unique. 
We must show that ~ is an interpretation. It is not hard to show that ~ is an 
interpretation when restricted to ,~,.~, and the result follows from the 
following important lemma: 

Lemma. Let d be a premanual, ~ a manual. If ~ ~ is an 
interpretation, then q~ extended to ( ~ )  is also an interpretation. 

Proof Let X = U d  and define 50=(S___X:  if S = A O B ,  then 
~ ( A ) o c ~ ( B )  in ~ } .  Since cp is an interpretation on d ,  we have ~ c_ 50. 
Claim: 50 is a manual. Let AopB, BocC in 50, and let D be an axis for 
AopB. By the definition of 50, we have q~(A)opcp(B), cp(B)occp(C) in ~ .  
Since ,.~ is a manual, ~(A)ocq~(C) in ~ .  Now let A 0 C = U u V. We must 
show that cp(U)occp(V) in ~ .  Since r it 
suffices to show that cp(U)nep(V)=~. Suppose there is x ~ q;(U)n~(V). 
Then there is u E U, v ~ V with x ~ r cp(v). Recall that q~(A)n cp(C) = 
O so that either u , v ~  A or u,v ~ C .  Without loss of generality, say, 
u , v ~ A .  Now we partition A U D into W 1 0 W  z w i t h u ~ W  1 , v ~ W  z.Since 
A U D ~ 50by assumption, we have ~(W~)oc cp(IV_,! which implies x _L x, a 
contradiction. Hence, r ~ (V)  in ,.~ and so A U C ~ 50and the claim is 

proved. Thus ( ~ ' )  c_ 5 ~ and it follows that (,.~') ~ ,,~ is an interpretation. 
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We complete this section with several algebraic results involving the 
tensor product. We are first interested in the question of whether the tensor 
product "factors through" direct sums or products. This leads us to a 
generalization of the operational product, called a Dacey sum: 

Definition 6.4. Let ~r a manual with I = U,,r For every i ~ I, l e t~ ,  
be manual. Then the Dace): sum of s~', over d i s  equal to ( U ~,~ EeFe /E  ~ d ,  
F, 

It can be shown that the Dacey sum is always a manual. It is not hard 
to show that the following fact is true: 

Proposition 6.5. Let {~r i ~ I ) be a collection of manuals. In the 
category of manuals and interpretations, (i) the direct sum (or coproduct) of 
{ Ja~,: i ~ I } is the Dacey sum of ~ over J ,  where J is the transformation 
manual with outcome set I. The sum is denoted ~A,;  (ii) the direct product 
of { ~ , :  i ~  I } is the Dacey sum of ~r over d ,  where ~r is the classical 
manual with outcome set I. The product is denoted e Jack. 

It is not hard to show that the tensor product does not factor through 
direct sums. That is, requiring only that Jaenot be a transformation manual 
and the indexing set I have # I  >/2, it is always true that ~ ' |  ( E ~ )  ~ F . ( ~  
|  The question of whether or not the tensor product factors through 
the direct product is more difficult. The answer is yes if the indexing set is 
finite, but is no in general. Both the counterexample in the infinite case and 
the proof in the finite case require work beyond the scope of this paper, and 
are omitted here. 

By definition, the tensor product of manuals is obviously commutative; 
that is, if zar174 is defined, then .,~| is defined and d |  ~ |  
Determining whether or not the tensor product is associative is quite 
difficult, and is still an open question. However, the answer is known in the 
locally finite case: 

Theorem 6.6. Let ~' ,  ~ ,  and ~ be locally finite manuals. Then if 
one of zac|174 or (~r174174162 is defined, then the other one 
is, and . ~ | 1 7 4  ( d | 1 7 4  

The proof of this theorem is based on two lemmas, each proved in the 
locally finite case. The first states that for premanuals ~ and ~ ? ~ )  = 
( ~  The second states that for manuals ,.ar ~ ,  and 5,  ((~------~)= 

(z$(~--~). In each equality, the existence of one implies the existence of the 
other. 
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7. CONCLUDING REMARKS 

It has been our intention to exhibit the basic ideas and definitions of a 
tensor product of generalized sample spaces and to discuss questions on the 
existence, the weight structure, and the categorical properties of this prod- 
uct. Among other topics in this area, we mention the following two. Much 
work has been done (and much remains to be done) on determining which 
operations are actually contained in the tensor product and obtaining a 
workable method for constructing them. Secondly, if we consider a manual 
modulo its equivalence relation, op, we obtain the logic of a manual. Much 
has been written about the so-called quantum logics and the question of 
how to tensor two logics (see Zecca, 1978). We believe that some insight into 
these problems can be obtained by studying the logics of manuals and their 
tensor products. 
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